Diagram 1 shows a circle with equation $x^{2} + y^{2} + 10x - 2y - 14 = 0$ and a straight line, l_{1} , with equation y = 2x + 1. The line intersects the circle at A and B.

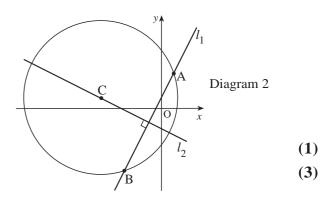
Diagram 1 Find the coordinates of the points A and B. /B

(5)

(b) Diagram 2 shows a second line, l_2 , which passes through the centre of the circle, C,

and is at right angles to line l_1 .

(a)



- Write down the coordinates of C. (i)
- Find the equation of the line l_2 . (ii)

nort	marka	Unit	nor	-calc	ca	llc	cale	e neut	Conter	nt Reference :	2.4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	~.1
(a)	5	2.4					5		2.4.4		Source
(<i>b</i>)i	1	2.4					1		2.4.2		1997 Paper 2
(<i>b</i>)ii	3	1.1					3		1.1.10	1.1.7	Qu.1

- (a) know to substitute
 - correct substitution
 - a "quadratic" = 0
 - x = -3, 1

$$y = -5, 3$$

- •6 **(b)** $m_{diameter} = 2$
 - $m_{perpendicular} = -\frac{1}{2}$
 - .8 centre = (-1, -1)
 - 9 equation: $y + 1 = -\frac{1}{2}(x+1)$

Relative to the axes shown and with an appropriate scale, P(-1, 3, 2) and Q(5, 0, 5) represent points on a road. The road is then extended to the point R such that $\overrightarrow{PR} = \frac{4}{3}\overrightarrow{PQ}$.

O

z

- (*a*) Find the coordinates of R.
- (b) Roads from P and R are built to meet at the point S (-2, 2, 5).Calculate the size of angle PSR.

part marks	Unit	non	-calc	ca	lc	calo	e neut	Content Reference :	3.1
part marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	0.1
(a) 3 (b) 7	3.1 3.1			3 7				3.1.6 3.1.11	Source 1997 Paper 2 Qu.2

(a)
•
$$\overrightarrow{PQ} = \begin{pmatrix} 6 \\ -3 \\ 3 \end{pmatrix}$$
• $2 \begin{pmatrix} 8 \\ -4 \\ 4 \end{pmatrix}$
• $3 \quad R = (7, -1, 6)$
(b)
• $4 \quad \overrightarrow{SP} \cdot \overrightarrow{SR} = |SP||SR|\cos P\widehat{SR}$
• $5 \quad \overrightarrow{SP} = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$
• $6 \quad \overrightarrow{SR} = \begin{pmatrix} 9 \\ -3 \\ 1 \end{pmatrix}$
• $7 \quad |SP| = \sqrt{11}$
• $8 \quad |SR| = \sqrt{91}$
• $9 \quad \overrightarrow{SP} \cdot \overrightarrow{SR} = 3$
• $10 \quad P\widehat{SR} = 84 \cdot 6^{\circ}$

(3)

(7)

 \overrightarrow{x}

The sum of £1000 is placed in an investment account on January 1st and, thereafter, £100 is placed in the account on the first day of each month.

- Interest at the rate of 0.5% per month is credited to the account on the last day of each month.
- This interest is calculated on the amount in the account on the first day of the month.

(<i>a</i>)	How much is in the account on June 30th?	(4)
(<i>b</i>)	On what date does the account first exceed £2000?	(2)
(C)	Find a recurrence relation which describes the amount in the account, explaining your notation carefully.	(3)

nort	marka	Unit	nor	-calc	ca	lc	calo	e neut	Conter	nt Reference :	1.4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	1.1
<i>(a)</i>	4	1.4			4				1.4.1		Source
<i>(b)</i>	2	1.4			2				1.4.1		1997 Paper 2
(<i>c</i>)	3	1.4			3				1.4.3		Qu.3

(a) \bullet^1 1.005

• 2 £1000 + interest = £1005

• 3 £1005 + £100 + interest = £1110.525

•⁴ £1537.93

(b) \bullet^5 complete another month

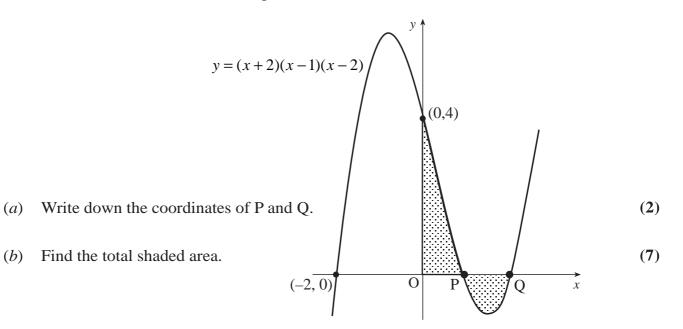
•⁶ £2073.94 on Nov.1st

(c) $\bullet^7 \quad u_{n+1} = 1.005u_n + 100$

•⁸ u_n = amount on 1st day of each month

• $u_0 = 1000$ (on 1st January)

The diagram shows a sketch of the graph of y = (x+2)(x-1)(x-2). The graph cuts the axes at (-2, 0), (0, 4) and the points P and Q.



nort	mortes	Unit	nor	-calc	ca	lc	calc	e neut	Conter	nt Reference :	2.2
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	~~~
											Source
<i>(a)</i>	2	2.1	2						2.1.2		1997 Paper 2
<i>(b)</i>	7	2.2	6	1					2.2.6		Qu.4

(a)
$$\cdot^{1}$$
 (1,0)
 \cdot^{2} (2,0)
(b) \cdot^{3} $\int f(x) dx^{-}$
 \cdot^{4} $\int_{0}^{1} -\int_{1}^{2}$
 \cdot^{5} $(x+2)(x^{2}-3x+2)$ or equiv.
 \cdot^{6} $x^{3}-x^{2}-4x+4$
 \cdot^{7} $\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-2x^{2}+4x$
 \cdot^{8} $1\frac{11}{12}$ or $-\frac{7}{12}$
 \cdot^{9} $2\frac{1}{2}$

(a)

The first diagram shows a sketch of part of the V y = f(x)graph of y = f(x) where $f(x) = (x-2)^2 + 1$. The graph cuts the y-axis at A and has a minimum turning point at B. A Write down the coordinates of A and B. *(a)* (3) Đ 0 х y = f(x)(*b*) The second diagram shows the graphs of y = f(x) and y = g(x) where $g(x) = 5 + 4x - x^2.$

y = g(x)

(c) g(x) can be written in the form $m + n \times f(x)$ where m and n are constants.

Find the area enclosed by the two curves.

Write down the values of *m* and *n*.

(2)

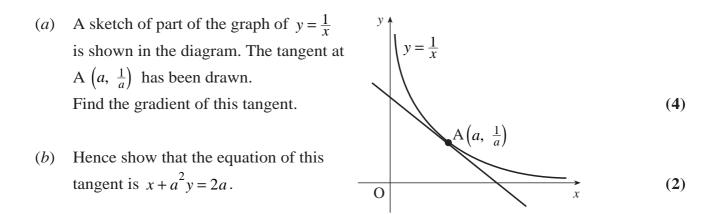
x

(5)

nort	mortea	Unit	nor	-calc	ca	lc	calo	c neut	Conte	nt Reference :	2.2
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	~~~
<i>(a)</i>	3	1.2	3						1.2.9		Source
<i>(b)</i>	5	2.2	5						2.2.7		1997 Paper 2
(<i>c</i>)	3	0.1		2					0.1		Qu.5

(a)
$$\cdot^{1} A = (0, 5)$$

 $\cdot^{2} x_{B} = 2$
 $\cdot^{3} y_{B} = 1$
(b) $\cdot^{4} \int_{0}^{4}$
 $\cdot^{5} \int \left(\left(5 + 4x - x^{2} \right) - \left(x^{2} - 4x + 5 \right) \right) dx$
 $\cdot^{6} 8x - 2x^{2} \text{ or equiv.}$
 $\cdot^{7} 4x^{2} - \frac{2}{3}x^{3} \text{ or equiv.}$
 $\cdot^{8} \frac{64}{3}$
(c) $\cdot^{9} n = -1$
 $\cdot^{10} m = 10$



- (c) This tangent cuts the *y*-axis at B and the *x*-axis at C.
 - (i) Calculate the area of triangle OBC
 - (ii) Comment on your answer to c(i).

nort	morte	Unit	non	i-calc	ca	lc	calo	e neut	Conter	nt Reference :	1.3
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	1.0
<i>(a)</i>	4	1.3					4		1.3.7		Source
<i>(b)</i>	2	1.1					1	1	1.1.7		1997 Paper 2
(<i>c</i>)	4	0.1						4	0.1		Qu.6

(a)
$$\cdot^{1} \qquad \frac{1}{x} = x^{-1}$$

 $\cdot^{2} \qquad \frac{dy}{dx} = \dots$
 $\cdot^{3} \qquad \frac{dy}{dx} = -x^{-2}$
 $\cdot^{4} \qquad \text{gradient} = -a^{-2}$
(b) $\cdot^{5} \qquad \text{use} \qquad y - \frac{1}{a} = -\frac{1}{a^{2}}(x-a)$
 $\cdot^{6} \qquad a^{2}y - a = -(x-a) \text{ and completes proof}$
(c) $\cdot^{7} \qquad y_{B} = \frac{2a}{a^{2}}$
 $\cdot^{8} \qquad x_{A} = 2a$
 $\cdot^{9} \qquad 2$
 $\cdot^{10} \qquad \text{independent of } a$

(3)

(1)

Mathematics: Additional Questions Bank (Higher) - Extended response questions

Find partial fractions for $\frac{5x+1}{(x-4)(x+3)}$.

Find partial fractions for
$$\frac{6x+2}{(x+2)(x-3)}$$
.
Let $\frac{6x+2}{(x+2)(x-3)} = \frac{A}{x+2} + \frac{B}{x-3}$ where *A* and *B* are constants
 $= \frac{A(x-3)}{(x+2)(x-3)} + \frac{B(x+2)}{(x-3)(x+2)}$
i.e. $\frac{6x+2}{(x+2)(x-3)} = \frac{A(x-3) + B(x+2)}{(x+2)(x-3)}$
Hence $6x+2 = A(x-3) + B(x+2)$ for all values of *x*.
A and *B* can be found as follows:
Select a value of *x* that
makes the first bracket zero
Let $x = 3$ (this eliminates *A*)
 $18+2 = A \times 0 + B \times 5$
 $20 = 5B$
 $B=4$
Therefore $\frac{6x+2}{(x+2)(x-3)} = \frac{2}{x+2} + \frac{4}{x-3}$.

Worked Example

expression $\frac{6x+2}{(x+2)(x-3)}$.

In certain topics in Mathematics, such as calculus, we often require to write an expression such as $\frac{8x+1}{(2x+1)(x-1)}$ in the form $\frac{2}{2x+1} + \frac{3}{x-1}$. $\frac{2}{2x+1} + \frac{3}{x-1}$ are called **Partial Fractions** for $\frac{8x+1}{(2x+1)(x-1)}$.

The worked example shows you how to find partial fractions for the

1997 Paper 2 Qu.7

19

nort	morte	Unit	nor	-calc	са	lc	calo	e neut	Conter	nt Reference :	4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	-
											Source
	6	0.1					6		0.1		1997 Paper 2
											Qu.7

•¹
$$\frac{A}{x-4} + \frac{B}{x+3}$$

•² $\frac{A(x+3)+B(x-4)}{(2x-1)(x+3)}$

•³
$$5x+1 = A(x+3) + B(x-4)$$

• ⁴ choose to let
$$x = -3$$
 and 4 in turn

•⁵
$$A = 3$$

•⁶
$$B=2$$

The radioactive element carbon-14 is sometimes used to estimate the age of organic remains such as bones, charcoal, and seeds.

Carbon-14 decays according to a law of the form $y = y_0 e^{kt}$ where y is the amount of radioactive nuclei present at time t years and y_0 is the initial amount of radioactive nuclei.

- (*a*) The half-life of carbon-14, i.e. the time taken for half the radioactive nuclei to decay, is 5700 years. Find the value of the constant *k*, correct to 3 significant figures.
- (b) What percentage of the carbon-14 in a sample of charcoal will remain after 1000 years?(3)

port morte	Unit	nor	n-calc	ca	lc	calo	e neut	Conte	nt Reference :	3.3
part marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	0.0
(<i>a</i>) 3 (<i>b</i>) 3	3.3 3.3			1	2 3			3.3.7 3.3.7		Source 1997 Paper 2 Qu.8

(a)
$$\bullet^1 \qquad \frac{1}{2} y_0 = y_0 e^{5700k}$$

•²
$$\ln \frac{1}{2} = 5700k$$

$$k^3 = -0.000122$$

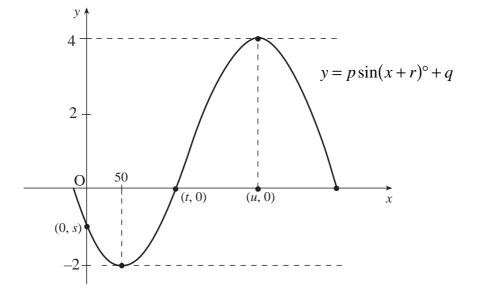
(b) •⁴ $y = y_0 e^{-0.000122 \times 1000}$ •⁵ $\frac{y}{y_0} = \dots$

⁶ 88.5%

(3)

The sketch represents part of the graph of a trigonometric function of the form $y = p \sin(x+r)^\circ + q$. It crosses the axes at (0, *s*) and (*t*,0), and has turning points at (50, -2) and (*u*, 4).

- (i) Write down values for *p*, *q*, *r* and *u*.
- (ii) Find the values for *s* and *t*.



port morte	Unit	nor	n-calc	ca	lc	calo	e neut	Conter	nt Reference :	2.3
part marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	2.0
(a) 4 (b) 4	1.2 2.3			2	2 4			1.2.3 2.3.1		Source 1997 Paper 2 Qu.9

(a)
$$\cdot^{1}$$
 $p = -3$
 \cdot^{2} $q = 1$
 \cdot^{3} $r = 40$ or -320
 \cdot^{4} $u = 230$
(b) \cdot^{5} replace x by 0
 \cdot^{6} -0.928
 \cdot^{7} replace y by 0
 \cdot^{8} 120.5

Г

(4)

(4)

A cuboid is to be cut out of a right square-based pyramid. The pyramid has a square base of side 8 cm. and a vertical height of 10cm.

(a) The cuboid has a square base of side 2x cm and a height of h cm.

If the cuboid is to fit into the pyramid, use the information shown in triangle ABC, or otherwise, to show that

- (i) $h = 10 \frac{5}{2}x$.
- (ii) the volume, V, of the cuboid is given by $V = 40x^2 - 10x^3$.

(b) Hence find the dimensions of the square-based cuboid with the greatest volume (6) which can be cut from the pyramid.

B

А

10

8

h

C

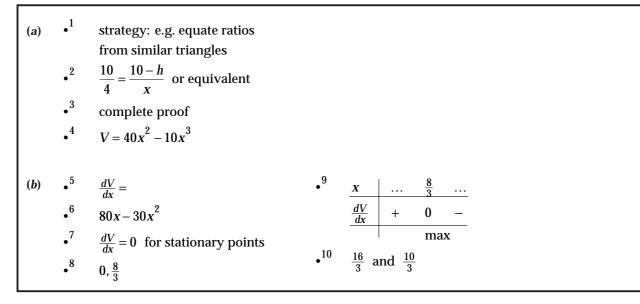
В

(3)

(1)

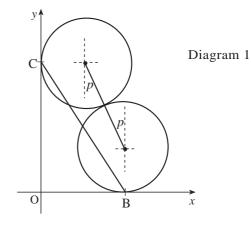
С

mont	montro	Unit	noi	n-calc	Ca	ılc	cal	c neut	Conte	nt Reference :	1.3
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	1.0
											Source
<i>(a)</i>	4	0.1					1	3	0.1		1997 Paper 2
<i>(b)</i>	6	1.3					3	3	1.3.15		Qu.10
											&u.10



Mathematics: Additional Questions Bank (Higher) - Extended response questions

Two identical coins, radius 1 unit, are supported by horizontal and vertical plates at B and C. Diagram 1 shows the coins touching each other and the line of centres is inclined at p radians to the vertical.

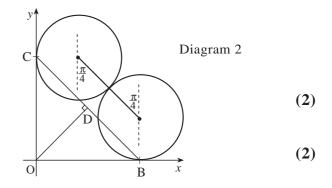


Let d be the length of BC.

(a) (i) Show that $OB = 1 + 2\sin p$ (1) (ii) Write down a similar expression for OC and hence show that

 $d^2 = 6 + 4\cos p + 4\sin p.$

- (b) (i) Express d^2 in the form $6 + k \cos(p \alpha)$
 - (ii) Hence write down the exact maximum value of d^2 and the value of p for which this occurs.
- (c) Diagram 2 shows the special case where $p = \frac{\pi}{4}$.
 - (i) Show that $OB = 1 + \sqrt{2}$ and find the exact length of BD.
 - (ii) Using your answer to (b)(ii) find the exact value of $\sqrt{6+4\sqrt{2}}$.



mont	montro	Unit	nor	n-calc	Ca	alc	cal	c neut	Conte	nt Reference :	3.4
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	0.1
(a)	3	0.1	2	1					0.1		Source
(b)	6	3.4	4	2					3.4.1	3.4.3	1997 Paper 2
(<i>c</i>)	4	0.1	1	3					0.1		Qu.11

(a)
$$\cdot^{1}$$
 $\sin p = \frac{abor^{n}}{2}$ and $OB = 1 + abor^{n}$
 \cdot^{2} $OC = 1 + 2 \cos p$
 \cdot^{3} $d^{2} = (1 + 2 \cos p)^{2} + (1 + 2 \sin p)^{2}$ and completes proof
(b) \cdot^{4} $k \cos(p-\alpha) = k\cos p \cos \alpha + k\sin p \sin \alpha$
 \cdot^{5} $k \cos \alpha = 4$ and $k \sin \alpha = 4$ (c) \cdot^{10} $OB = 1 + 2\sin \frac{\pi}{4}$ and completes proof
 \cdot^{6} $k = 4\sqrt{2}$ \cdot^{11} $BD = (1 + \sqrt{2}) \times \frac{1}{\sqrt{2}}$
 \cdot^{7} $\alpha = \frac{\pi}{4}$ \cdot^{12} $BC = 2 + \sqrt{2}$
 \cdot^{8} maximum value = $6 + 4\sqrt{2}$ \cdot^{13} $6 + 4\sqrt{2} = (2 + \sqrt{2})^{2}$ so $\sqrt{6 + 4\sqrt{2}} = 2 + \sqrt{2}$
 \cdot^{9} occurs when $p = \frac{\pi}{4}$

(2)

(4)

(2)